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Abstract-This paper presents a reciprocity theorem for dynamic problems in thermoelastic dielectrics and
a derivation of fundamental solutions to the wave equations for infinite continuous media. In particular,
Green's functions are obtained in closed form for the displacement and polarization vectors, the tem
perature and Maxwell's electric fields resulting from various causes, all of which are assumed to vary
harmonically with time. The last section is devoted to some consequences of tbe reciprocity theorem given
here.

NOTATION
(A~ constants (Appendix B)
bo constitutive constant

b.p constitutive constants
(C~ constants (Appendix B)
CeP constitutive constants
(D~ constants (Appendix B)
~ constitutive constants

E S Maxwell self-field vector
LE local electric vector
£0 electric force vector
i body force vector per unit mass
ii vector function used in Helmholtz formulae (eqn 3. \)
(i~ function defined in eqns (3.19) and (4.5)
K vector function used in Helmholtz formulae (eqn 3,1)
f surface traction vector
:t Laplace transform
ii unit outward normal vector
P polarization vector
r heat source

ro IIr

5=510}+ 5(1l surface electric force vector per unit area
Sij components of strain tensor
T absolute temperature

T/j components of stress tensor
t time
ii displacement vector
v scalar function used in Helmholtz formulae (eqn 3. \)

i. i ' position vectors
11 surface charge
r vector function used in Helmholtz formulae (eqn 3,1)
'Y scalar function used in Helmholtz formulae (eqn 3.1)

61j Kronecker delta
Elj components of electric tensor
Eo permittivity of vacuum
'1 entropy density per unit mass
8 incremental temperature

80 positive reference temperature
/( constant (eqn 2.19)
A vector function used in Helmholtz formulae (eqn 3.1)

Ao coefficient of thermal conductivity
j.£, (p.~ constants (Appendix A)

II constant (eqn 2.19)
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{ constitutive constant
{ v{
P mass density

Pc charge density
CT constitutive constant
6 VO'

(6 l, constants (Appendix A)
T time

4> Maxwell potential
X scalar function used in Helmholtz formulae (eqn 3.1)
I{J scalar function used in Helmholtz formulae (eqn 3.1)

I. INTRODUCTION

In Toupin's work[I] on elastic dielectrics there is no coupling between the mechanical
displacement and the polarization gradient for centrosymmetric materials. This theory was
extended by Mindlin [2] and Suhubi[3] by assuming dependence of the stored energy function
also on the polarization gradient. Mindlin's theory has been of increasing interest in recent
years for the solution of plane wave problems. For example, by including magnetic effects and
assuming periodic wave characteristics, the plane wave problem for alpha quartz was in
vestigated in [4]. A linear theory of thermoelastic dielectrics is presented in [5] based on the
energy balance, while a complete nonlinear theory for such materials is derived in [6] using the
first and second law of thermodynamics and certain invariance requirements.

Betti's reciprocity theorem was generalized to thermoelasticity by Maysel [7] while for the
static elastic dielectric case it was recently derived in [8]. The problem of monochromatic
three-dimensional waves for classical thermoelasticity has been investigated by a number of
authors. In particular, Green functions for such waves in micropolar thermoelasticity were
studied by Nowacki[9].

The purpose of this paper is: (i) to derive the reciprocity relation for dynamic problems in
thermoelastic dielectrics; (ii) to derive fundamental solutions to the wave equations for the
unbounded continuum; in particular, present, in a closed form, Green's functions for the
displacement and polarization vectors, the temperature and Maxwell's electric fields resulting
from the action of concentrated body force, electric force, charge density and heat supply
functions, all varying harmonically with time; and (iii) indicate some consequences of the
reciprocity theorem for monochromatic problems in thermoelastic dielectrics.

All symbols are defined where first used in the text and are summarized for convenience in
the Notation.

2. THE RECIPROCITY THEOREM

The system of basic linear equations for a thermoelastic dielectric including polarization
gradient effects occupying the domain V and bounded by the surface S are given by [5]

(i) The field equations

(ii) The boundary conditions

Tij,i + plj =: pilj; Tjj = Tji

Eij,i +LEj +Ers
= - Ej

O

-EotP,ii + Pj,i = -Pc in V

tP,jj =: 0 in v*
80il =: A08,ii + r,

7'..n· = k·· E\!ln· = s.(\). n·bo= s.(0)
I'l I l' IJ I J' 1 I

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)
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(iii) The constitutive relations

T;j =dI28i!'n.n + d44(pj,i + PiJ) + CI28;jSU + 2C44S;j + cro;j8

-LEk =aPk

El]l =bI28;!'n.n + b44(P;,j + Pj.;) + d12l)ijSkk + 2d44Sij + ~l)ilJ

Eij = El]l +bol)jj

TI = uSu + ~Pk,k + c.80-
18

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

and the kinematic relations

(2.13)

where Tij, Eij and Sij designate the components of the stress tensor, electric tensor and strain
tensor, respectively; u;, Pi, LE;, Ei

MS
, Ii, ni are components of the displacement vector,

polarization vector, local electric vector, Maxwell self-field vector, body force vector and the
exterior unit normal vector, respectively; tP, IltP'i~' Pc, TI, denote Maxwell potential, jump in tP;
across S, charge density and entropy density, respectively; kj, S; =S;o+ Sp l , (3 and r are surface
traction, surface electric force, surface charge and heat source, respectively, while V* stands
for outer vacuum and Eo its permittivity; 8 is an incremental temperature defined by[10, II]

8= T-80 (2.14)

where T is the absolute temperature and Bodenotes a constant, positive, reference temperature;
a, bajJ, cajJ, d.." ~ and u are material constants, c. is the specific heat and Ao denotes the
coefficient of thermal conductivity.

Substituting eqns (2.8)-(2.12) into (2.1)-(2.5) yields Navier's equations of thermodielectrics
as

(2.18)

- - 2
V· P - EoV tP = -Pc

[
2 1 a] -. A- ...V - - - 8- uV . ii - ~ . P =-ro

K at

C44V2a+ (CI2+ en)VV· il +d44VZP + (dI2 +d44)VV . P+uV8+ pl=pQ (2.15)
2 -- 2 - -- - - - - -0d44V a+(dI2 + d44)VV· ii +(b44 +b77)V P +(bI2 +b44 - b77)VV· P +aP-VtP+~B+ E =0

(2.16)

(2.17)

where

K = Ao• r. =.",. U= 110",C.' 0 , (2.19)

Let the dielectric be subjected to two different loading systems, namely 1= {l. eo, Pc, k, S,
{3, r1 and I' = {i', ~, p~, f', S', {3', r'}. Let the two corresponding configurations be defined by
{ii,P, tP, 8} and {a', P', tP', B'}. Using Laplace's transform[I2] on the basic equations (2.1)-(2.4),
(2.6)-(2.11), one obtains

Pt<';;Ui-1iUi)dV+ fv(ENJi-E;OtP;)dV+ fv(Pc~'-P~~)dV

+L(kiui-kiui)dA+L(SP>Pi-SP>'Pi)dA+L(1U'-ti'~)dA

=t[u(iSi;- i'sli)+~(ipi,;- i'pl.;)] dV (2.20)
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j;(i, p) == ~[/i(i, t)] == f' f;(i, t) e-pt dt; etc.

Next we use the heat conduction equation (2.5), togehter with eqn (2.12) and apply Laplace's
transform to obtain

(2.21)

Substituting eqn (2.21) into (2.20) and using the convolution theorem we obtain the general form
of the reciprocity theorem as

i t {f [ ,1.( - t - ) au~{i, 7') _ ,1'1 - t _ ) auM, 7') + EO( - _ ) oP'~i.. 7')v PJ f X, 7' ~ PJ i\X, 7' ~ I X, t 7'
(I V u7' uT OT

_ E(I'(i t - ) oPi(i, T) + (- t _ ) ot:/J'(i, T) "( - t _ ) ot:/J(i, T)] d'V
I , T 07' Pc X, T OT Pc\.X, T 07'

+J [k.(- t- )aU~{i,7') k'{- t- )OU;(i,T)+S.(l)(- t- )oP;{i,7')
f x, 7' ~ i\X, 7' ~ I X, 7' ~

A uT uT uT

- Sj(l)'(i, t - T) OPi~:' T) + (3(i. t - T) Ot:/JI~:, T) - (3'(i, t - T) at:/J~~ r)] dA } dT

==L{Iv[r(l(i,t-T)8'(i'7')-r~(i, t-r)8(i,r)]dV

+L[8'(i, t - T)8,;(i, T)- 8(i, t - T)8:i(i, T)] dA} dr (2.22)

from which, by assuming all causes and effects to be harmonic in time, we obtain the following
simpler form of the reciprocity theorem for an infinite body

iv Iv [pIt ui' - pli'ui + E'i°Pi' - E,olP, + p~t:/J*' + p~'t:/J*] d V == Iv(r~8*' - r~'(J*) dV

(2.23)

where

I, == /'i(i) e-ialr ; E,o == Ejo*(i) e-iwl etc. and i == V-I.

3. FUNDAMENTAL SOLUTIONS FOR INFINITE
THERMOELASTIC DIELECTRICS

In the remainder of the paper, discussion is restricted to the case of all causes and effects
varying harmonically with time. Using the Helmholtz decomposition theorem for vector fields,
one can write

(3.1)
f*==vv*+vxr*; £O*==Vy*+VXA*:

which, when used in eqns (2.15)-(2.18), leads to the following two systems

(CIIV2 + pw2)t/1* + dIlV2X* + 0'8* == - pv*

dllV
2t/1* +(b llV2

- a)x* +t8* == t:/J* == -y*

V2X* - EoV
2t:/J* == -P~

(3.2)

(3.3)

(3.4)
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(V2 + i:) 0* = -r:

(C44V2+pc.?)H* +d44V
2K* = -pr*

d44V2H* + [(b44 +b77)V2
- a]K* = -A*

XJI = XI2 +2X44 (x = b, C, d)
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(3.5)

(3.6)

(3.7)

and where the terms uV' ii and iv· Pin eqn (2.18) were neglected as "small terms" in deriving
these results [13]. The first system represents longitudinal waves and temperature fields.
Longitudinal waves can be produced in an infinite medium by a temperature field obeying eqn
(3.5) with a given heat source, rW, the sources v*, 1*, p~ and the initial disturbances in r/J*, X*,
4>* and 0*. The transverse waves described by the second system can be produced by the
sources r* and A*as well as the initial disturbances in H* and K* only.

After some algebra, eqns (3.2)-(3.7) can be recast to read

(V2 +1L12)(V2 + ILl)r/J* = U3(V2 +(4)V* +usV
2y* +U6P~ +U7(V2 +(18)0* (3.8)

V2(V2 +1L12)(V2 + ILl)x* = U9V4V* +UlO(V2 +UII)V2y* +U12(V2 +UJI)p~ +U13V
2(V2 + (114)0*

(3.9)

V2
(V2 +1L?)(V2 + ILb4>* = -PU6~V* - ullV2 +UII)V2y* +£113 V2(V2 + (114)0*

Eo

+[V4 +uo(pw2bJl - aCJI)V2- Eoapw2]Eo-I pc

(V2 + IL 2)0* = -rt
and

(Vi + JLI 2)(V2 +JLl)H* = U3(V2 +U4)r* +UsV
2A*

(V2 + JLI2)(V2 + JL22)K* = u 9V
2r* +UlO(V2 +uII)A*

(3.10)

(3.11 )

(3.12)

(3.13)

where all new constants introduced are defined in Appendix A.
In order to obtain a solution of the system of eqns (3.8)-(3.13), we assume in succession all

source terms, except one, to be equal to zero; (i) " #- 0; (ii) Eja. #- 0; (iii) p~ #- 0; (iv) rW #- O. For
example, for the first case of loading, one finds

where

r/J*(i) = 4 (-;,"3 2)f v*(i')[(1L12- (14)]1 - (lLl- (14)]2] dV(i')
1T ILl - 1L2 V

*( -) -usP f *( -')[ 2] 2] ] dV( -')X x = 4 (2 2) v X ILl 1- 1L2 2 X
1T ILl -1L2 V

4>*(i') = X*(i)
En

K*(i) - -UsP f r-*( -')[ A 2]A A 2[A 1dV -,- 4 (A 2 A 2) X ILl 1 -1L2 2 (X)
1T ILl - 1L2 V

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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Analogous expressions, shown in Appendix B, can be obtained for the other three loading cases
listed above.

4. GREEN FUNCTIONS FOR THERMOELASTIC DIELECTRICS

Next we determine Green's functions for the displacement, polarization, electric and
temperature fields for a thermoelastic tlielectric subjected to periodically varying concentrated
body force and electric force acting in an arbitrary direction, concentrated charge density and
heat source, all applied at a point i' of an infinite dielectric medium. The functions v*, f*, y*
and A* are obtained with the aid of the Helmholtz formulae as

{v*(i'), 'Y*(i')} == - 4~ Iv U*(i'),Eo*(i')} x :i (R-I(i, i')] dV(i) (4.1)

{f*(i'), A*(i' )} == - 4~ Iv U*(i'), EO*(i')} X:i (R-I(i, i')] dV(i). (4.2)

Substituting these two equations into the solutions for the particular loading cases listed in
Section 3 (eqns 3.14-3.18) and Appendix B, and using eqns (3.1), one obtains the Green's
functions for the following four loading cases:

(i) Concentrated body force: f~(j) == S(X)Si;

f*(i) I· 2.···P j == 41T [C3(Vj Vj - V )(IkIII- IL212) +C3VjV j (IL 1I,- IL2I2)]

f4J*(i) = _1_ C3Vj (lt +12)
41TEo

where 10 == 10 == R-' and (a == 0,1,2).

(ii) Concentrated electric force: E~O(j) = S(x)Sij

E *0 1· 2"G j I =-4 [C3(VjVj-V)(p"It-P,2I2)+C3VjVj(ILtll-1L2h)]
1Tp

(iii) Concentrated electric charge: p~ == Sex)

(iv) Concentrated heat source: rri == Sex)

IIGj' == :; Vj(Aala)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.tl)

(4.12)

(4.13)
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e",* =..£:ll.. (.4 1 )
'I' 4'71'Eo a a

189

(4.14)

where all new constants used in this section are defined in Appendix A. Instead of applying the
above concentrated loads at the origin, as was done, one can apply them at a general point x' to
obtain the Green's functions at point x, i.e. G(i, i'). Note that in general, /L. (,1) are complex
numbers and to obtain a real valued solution for the governing equations, one uses the formulae

G(x. x', t} =Re[G*(i, i'} e-i"'t]~ etc. (4.15)

5. IMPLICATIONS OF RECIPROCITY THEOREM

Assume that at the point x' there acts a harmonically varying concentrated force Ipl =
8(i - x'}8ii e-i<oJt directed along the xraxis, and at a second point, x", a similar force Ilkl =
8(x - X")8ik e-i<ot, directed along the xk-axis. For this loading system we obtain, from eqn (2.23)

(5.1)

from which we conclude that

(5.2)

Similarly, one can show the same symmetry relations for the Green's functions corresponding
to the other three concentrated load cases discussed above.

In deriving a second implication, consider that there is a concentrated electric force,
(i)Et =8(x, X')8ii e-ioJI acting at the point x' and a concentrated force, Ir) =8(x. x")8jk e-ioJI

acting at point x". Using the reciprocity theorem, eqn (2.23), one can show that for such a
loading condition

(5.3)

which yields

(5.4)

By analogous reasoning, one can derive for various pairs of concentrated loads the following
additional reciprocity relations

pPcGt(x", x'} = ft/J*<kl(x', x"},

Et/J*<k)(X", x'} =Pcpt(x', x").

(55)

(5.6)

CONCLUSIONS

The general form of the reciprocity theorem for thermoelastic dielectrics including polariza
tion gradient effects has been derived using the field equations and constitutive relations. Next,
the basic solution to the wave equations for an infinite medium has been obtained. In particular,
closed form expressions for the wave functions of the temperature and Maxwell's electric fields
are forined for an unbounded dielectric subject to the action of various external causes Ooads)
which are harmonically varying with time. One of the results obtained shows that longitudinal
displacement waves are coupled with longitudinal polarization waves in an infinite solid.
Secondly, transverse displacement waves and transverse polarization waves are also coupled
but do not depend on the temperature or Maxwell's electric field. In the final section, some
consequences of the reciprocity theorem have been discussed.
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APPENDIX A
The various constants introduced in the body of the paper are defined as follows:

2 iw
j.t"'

/(

0'" = (bllCll dllr l; 0'1'" 0'0lb ll w2p - cll(a + Eo·
I
)];

0'2 = (a + E,,'llw2pu,,: O'J'" -0'0b1Ip;

0'4 =-(a + E" l)b!ll; 0', =dIlO',,;

O'.=-O',E,,'I; 0'7=0'"Udll O'b ll ):

0'8=(a+E,,'1)0'0'''0'7· 1
; 0'9 PO',;

0',,, '" -CliO'''; 0'11 =W2pCIII;

0'12=-E""0',,,; O'n=O',,(O'dll-lfll):

a~ = -~pw20',,0'!i; all = !c44(b44 + bnl- d~4rl;

u, =O'ol(b44 +b77)pw2 - aC44]; 0'2'" apw2O'o ;

U, = -(h44 + bn)pU,,; U4 = -1I(h44 +hnl'l;

APPENDIX B
Fundamental solutions. analogous to eqns (3.14H3.18). are obtained for the remaining three loading cases as follows:

(i) For ri,e case; E;";f. 0

x*(·n'" - 4 (~IO 2)f 'Y*(i)[(II} - 0'11)/' (1-1/- O'll)I2]dV(i')
'IT 1-11 -1-12 V

cb*(Jl'" EO'IX*(J)

ii*<.iI=-4 ('~' '2)f X*(i)IIiHI-jiH2JdV(i')
1T ILl -1L2 \'

(BI)

(B2)

(B3)

(B4)
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(ii) For the case: p~ "0

X*(i) = 4~ Iv p~(i')[D.I.1 d Vii')

"'*(i) - x'(i) - <p"(i)
Eo

where

(iii) For the case: rt;< 0
Assuming (I is a known function. we obtain

X*(il =- 4 (~1O ')f (I*(i')[(I''>- 0"'4)['- (1','- U'4)[') dVIi')
fTl"-1'2 v

<p*(i) = X*(i').
E.

Now, assume thaI rt(i), is a known function. Then eqns (3.8H3.1l) imply

(V' +I',')(V' +I'l)(V' +1")"" = -U1(V' + u,)r~

(V' +IL,')(V' +1L,2)(V' +IL')X" =-UIl(V' +u,,)r~

and the solutions to these equations take the form

"'*(i) = :; Iv ro(i')[A~~1 dV(i')

x*(i) = ;:Jroli')[A~[~1 d Vii')

<b*(i) = x"(i)
Eo

where
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(B5)

(B6)

(B7)

(88)

(B9)

(BIO)

(BIl)

(BI2)

(BI3)

(BI4)

(BI5)

(816)

(BI7)


